首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2083篇
  免费   129篇
  国内免费   89篇
  2023年   21篇
  2022年   13篇
  2021年   84篇
  2020年   51篇
  2019年   57篇
  2018年   58篇
  2017年   52篇
  2016年   70篇
  2015年   144篇
  2014年   107篇
  2013年   148篇
  2012年   198篇
  2011年   175篇
  2010年   108篇
  2009年   71篇
  2008年   125篇
  2007年   102篇
  2006年   83篇
  2005年   77篇
  2004年   58篇
  2003年   67篇
  2002年   43篇
  2001年   57篇
  2000年   38篇
  1999年   53篇
  1998年   18篇
  1997年   17篇
  1996年   15篇
  1995年   12篇
  1994年   14篇
  1993年   8篇
  1992年   21篇
  1991年   15篇
  1990年   20篇
  1989年   22篇
  1988年   7篇
  1987年   5篇
  1986年   6篇
  1985年   6篇
  1983年   3篇
  1981年   3篇
  1979年   3篇
  1978年   6篇
  1977年   3篇
  1975年   4篇
  1974年   3篇
  1972年   4篇
  1971年   4篇
  1970年   5篇
  1956年   2篇
排序方式: 共有2301条查询结果,搜索用时 125 毫秒
71.
To explore novel effective drugs for the treatment of Alzheimer’s disease (AD), a series of dual inhibitors of acetylcholineterase (AChE) and β-secretase (BACE-1) were designed based on the multi-target-directed ligands strategy. Among them, inhibitor 28 exhibited good dual potency in enzyme inhibitory potency assay (BACE-1: IC50 = 0.567 μM; AChE: IC50 = 1.83 μM), and also showed excellent inhibitory effects on Aβ production of APP transfected HEK293 cells (IC50 = 98.7 nM) and mild protective effect against hydrogen peroxide (H2O2)-induced PC12 cell injury. Encouragingly, intracerebroventricular injection of 28 into amyloid precursor protein (APP) transgenic mice caused a 29% reduction of Aβ1–40 production. Therefore, 28 was demonstrated as a good lead compound for the further study and more importantly, the strategy of AChE and BACE-1 dual inhibitors might be a promising direction for developing novel drugs for AD patients.  相似文献   
72.
Matrix production during biofilm formation by Bacillus subtilis is governed by a gene control circuit at the heart of which are three dedicated regulatory proteins, the antirepressor SinI, the repressor SinR and the downstream regulator SlrR. Matrix production is triggered by the synthesis of SinI, which binds to and inactivates SinR, thereby derepressing genes for matrix production as well as the gene for SlrR. Recently, two additional regulators of matrix genes were identified: SlrA, which was reported to be an activator of SlrR, and YwcC, a repressor of SlrA synthesis (Kobayashi, 2008). We present evidence indicating that SlrA, which is a paralogue of SinI, is like SinI, an antirepressor that binds to, and inactivates, SinR. We also show that SlrA does not activate SlrR for expression of matrix genes. Instead, SlrR binds to, and inhibits the activity of, SlrA. Thus, the YwcC-SlrA-SinR-SlrR pathway is a negative feedback loop in which SlrA indirectly stimulates the synthesis of SlrR, and SlrR, in turn, inhibits the activity of SlrA. Finally, we report that under standard laboratory conditions SlrA makes only a small contribution to the expression of genes for matrix production. We propose that in response to an unknown signal recognized by the YwcC repressor, SlrA transiently boosts matrix production.  相似文献   
73.
Previously, we disclosed that O‐linked glycosylation of Ser‐132 or Ser‐135 could dramatically change the amyloidogenic property of the hamster prion peptide (sequence 108–144). This peptide, which corresponds to the flexible loop and the first β‐strand in the structure of the prion protein, is a random coil when it is initially dissolved in buffer, but amyloid fibrils are formed with time. Thus, it offers a convenient model system to observe and compare how different chemical modifications and sequence mutations alter the amyloidogenic property of the peptide within a reasonable experimental time frame. In our earlier study, aside from uncovering a site‐specificity of the glycosylation on the fibrillogenesis, different effects of α‐GalNAc and β‐GlcNAc were observed. In this work, we explore further how different sugar configurations affect the conformational property of the polypeptide chain. We compare the effects of O‐linked glycosylation by the common sugars α‐GalNAc, β‐GlcNAc with their non‐native analogs β‐GalNAc, α‐GlcNAc in an effort to uncover the origin of the sugar‐specificity on the fibril formation. We find that the anomeric configuration of the sugar is the most important factor affecting the fibrillogenesis. Sugars with the glycosidic bond in the α‐configuration at Ser‐135 have a dramatic inhibitory effect on the structural conversion of the glycosylated peptide. Because O‐glycosylation of Ser‐135 with α‐linked sugars also promote the formation of three slowly converting conformations at the site of glycosylation, we surmise that the amyloidogenic property of the peptide is related to its conformational flexibility, and the proclivity of this region of the peptide to undergo the structural conversion from the random coil to form the β‐structure. Upon O‐glycosylation with an α‐linked sugar, this conversion is inhibited and the nucleation of fibril formation is largely retarded. Consistent with this scenario, Arg‐136 is the residue most affected in the TOCSY NMR spectra of the glycosylated peptides, other than the serine site modified. In addition, when Arg‐136 is substituted by Gly, a mutation that should provide higher structural flexibility in this part of the peptide, the amyloidogenic property of the peptide is greatly enhanced, and the inhibition effect of glycosylation is largely diminished. These results are consistent with Ser‐135 and Arg‐136 being part of the kink region involved in the structural conversion. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   
74.
Two non-normalized cDNA libraries of uteri from Danish Landrace and Chinese Erhualian pigs were constructed, and 13,756 expressed sequence tags (ESTs) were randomly sequenced. The ESTs were clustered by Phrap software, and 6,139 distinct tentative consensus sequences were produced, including 2,730 contigs and 3,409 singlets. Using Blast tools, these 6,139 candidate genes were compared to the nr and nt databases; 5,210 of them were assigned putative functions, whereas 929 potentially represent new genes. Highly expressed genes appear to be associated with basic energy metabolism, transferase activity, localization, cellular physiological process, protein binding, and nucleic acid binding. Antileukoproteinase was the most highly expressed gene, corresponding to endometrial differentiation and conceptus or fetal development.  相似文献   
75.
Tooth root development begins after the completion of crown formation in mammals. Previous studies have shown that Hertwig's epithelial root sheath (HERS) plays an important role in root development, but the fate of HERS has remained unknown. In order to investigate the morphological fate and analyze the dynamic movement of HERS cells in vivo, we generated K14-Cre;R26R mice. HERS cells are detectable on the surface of the root throughout root formation and do not disappear. Most of the HERS cells are attached to the surface of the cementum, and others separate to become the epithelial rest of Malassez. HERS cells secrete extracellular matrix components onto the surface of the dentin before dental follicle cells penetrate the HERS network to contact dentin. HERS cells also participate in the cementum development and may differentiate into cementocytes. During root development, the HERS is not interrupted, and instead the HERS cells continue to communicate with each other through the network structure. Furthermore, HERS cells interact with cranial neural crest derived mesenchyme to guide root development. Taken together, the network of HERS cells is crucial for tooth root development.  相似文献   
76.
Proteasome inhibitors represent a promising therapy for the treatment of relapsed and/or refractory multiple myeloma, a disease that is concomitant with osteolysis and enhanced osteoclast formation. While blockade of the proteosome pathway has been recently shown to influence osteoclast formation and function, the precise molecular cascade underlying these effects is presently unclear. Here, we provide evidence that proteasome inhibitors directly impair osteoclast formation and function via the disruption of key RANK‐mediated signaling cascades. Disruption of the proteosome pathway using selective inhibitors (MG‐132, MG‐115, and epoxomicin) resulted in the accumulation of p62 and CYLD, and altered the subcellular targeting and distribution of p62 and TRAF6 in osteoclast‐like cells. Proteosome inhibition also blocked RANKL‐induced NF‐κB activation, IκBα degradation and nuclear translocation of p65. The disruption in RANK‐signaling correlated dose‐dependently with an impairment in osteoclastogenesis, with relative potency epoxomicin > MG‐132 > MG‐115 based on equimolar concentrations. In addition, these inhibitors were found to impact osteoclastic microtubule organization and attenuate bone resorption. Based on these data we propose that deregulation of key RANK‐mediated signaling cascades (p62, TRAF6, CYLD, and IκBα) underscores proteasome‐mediated inhibition of osteolytic bone conditions. J. Cell. Physiol. 220: 450–459, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
77.
Reduction of (+)-and (−)-camphorquinones (1a, 1b) by various vegetables (carrot, potato, sweet potato, apple, Japanese radish, cucumber, burdock and onion) gave -hydroxycamphor selectively. Using burdock, (+)-camphorquinone was reduced to give (−)-3S-exo-hydroxycamphor (4a) as major product in high stereoselectivity with high yield. Moreover, 1,2-cyclohexanedione (1c) and 2-methylcyclohexanone (1d) with various vegetables afford enantiomerically pure trans- and/or cis-alcohol, respectively. Various vegetable reduction gave a new idea of a biotechnological process.  相似文献   
78.
79.
80.
Abstract

We have performed NPT molecular dynamics simulations (Langevin Piston Method) on two types of solvated proteins-‘denaturation-unfavorable’ protein (insulin) and ‘denaturation-favorable protein’ (ribonuclease A) at high pressure (from 1 bar up to 20 kbar). The method is based on the extended system formalism introduced by Andersen, where the deterministic equations of motion for the piston degree of freedom are replaced by Langevin equation. We report the structural changes of proteins (ribonuclease A and insulin) and water molecules through radius of gyration, solvent accessible surface area, hydrogen bond pattern, and the topology of water clusters connected by the hydrogen bonded circular network. The solvent accessibility of ribonuclease A is mainly decreased by hydrophilic residues rather than hydrophobic residues under high pressure. From the results of hydrogen bond analysis, we have found that α-helix is more stable than β-sheet under high pressure. In addition, from the analysis of the water cluster, we have observed that for ribonuclease A, 5-membered ring structure is more favorable than 6-membered ring at higher pressure. However, for insulin, the ratio of 5 to 6-ring is constant over the pressure ranges for which we have performed MD simulation. This indicates that the water structure around insulin does not change under high pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号